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ABSTRACT: Efficient reduction of O2 to water is a central
challenge in energy conversion and many aerobic oxidation
reactions. Here, we show that the electrochemical oxygen
reduction reaction (ORR) can be achieved at high potentials by
using soluble organic nitroxyl and nitrogen oxide (NOx)
mediators. When used alone, neither organic nitroxyls, such as
2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl (TEMPO), nor NOx
species, such as sodium nitrite, are effective ORR mediators.
The combination of nitroxyl/NOx species, however, mediates
sustained O2 reduction with overpotentials as low as 300 mV in
acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the
nitrogen oxide catalyst drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to
the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The
overpotentials accessible with this ORR system are significantly lower than widely studied molecular metal-macrocycle ORR
catalysts and benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NOx
species, together with kinetically efficient reduction of oxidized NOx species by TEMPO and other organic nitroxyls.

■ INTRODUCTION

Fuel cells operate via the coupling of two complementary half-
reactions: (1) oxidation of a fuel, such as H2, and (2) reduction of
O2 to water (Scheme 1A). Many catalytic aerobic oxidation
reactions feature similar coupling of two half-reactions, whereby
selective oxidation of an organic molecule (SubH2) is mediated
by the oxidized catalyst and O2 is used to oxidize the reduced
catalyst (Scheme 1B). In order for fuel cells to achieve the highest
possible energy efficiency, the oxygen reduction reaction (ORR)
must be kinetically facile at electrochemical potentials close to

the thermodynamic potential for O2 reduction. Formation of
hydrogen peroxide as an intermediate or byproduct inherently
limits the half-cell potential at the cathode (Table 1, eqs 1 and
2).1 Molecular ORR catalysts, such as metalloporphyrins and
related macrocyclic metal complexes, have been the focus of
extensive investigation,2,3 but such catalysts typically operate at
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Scheme 1. Conceptual Similarity between Fuel Cells and
Aerobic Oxidation Reactions

Table 1. Thermodynamic Values Associated with O2
Reduction and NOx-Based Redox Reactions in Aqueous
Solution

eq reaction ΔG° or E° refs

O2 Reduction Reactions
1a + + ⇌+ −O 4H 4e 2H O2 2

1.23 V 12

2a + + ⇌+ −O 2H 2e H O2 2 2
0.68 V 12

NOx-Based Redox Reactions
3b + ⇌•O 2NO 2NO2 2 −8.4 kcal·mol−1 13

4a + + ⇌• + −NO H e 2HNO2 2
1.06 V 13, 14

5a + + ⇌ ++ − •HNO H e H O NO2 2
1.04 V 13

aAqueous solution, 1 atm. bGas phase value.
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potentials far from the thermodynamic limit and often generate
hydrogen peroxide.3d,4−8 Aerobic oxidation reactions of the type
depicted in Scheme 1B face similar issues.9 These catalytic
reactions commonly proceed via two-electron redox cycles in
which the O2 reduction step produces hydrogen peroxide, which
either accumulates10 or undergoes disproportionation into O2
and water.11 The formation of H2O2 limits the driving force
available to carry out the substrate oxidation half-reaction and
thereby contributes to the widespread use of more expensive,
toxic, or otherwise less desirable stoichiometric oxidants in
challenging synthetic oxidation reactions.
Use of nitrogen oxide (NOx) cocatalysts provides a potential

opportunity to overcome the limitations noted above. The
reaction of nitric oxide (NO) with oxygen is kinetically facile and
thermodynamically favorable, and it results in direct cleavage of
the O−O bond of O2 to afford nitrogen dioxide (NO2) without
forming H2O2 as an intermediate or byproduct (Table 1, eq 3).15

Moreover, the proton-coupled steps for reduction of NO2 to NO
exhibit standard potentials close to the thermodynamic potential
for O2 reduction to water (Table 1, eqs 4 and 5). The use of NOx-
based mediators to achieve high-potential ORR, however, is
limited by poor direct electrochemical reduction of NOx
species.16,17 Previous efforts to overcome this limitation have
used NOx species in combination with the VO2+/VO2

+ couple to
achieve electrocatalytic O2 reduction.18 However, vanadyl is
similarly problematic as a mediator due to its own slow
heterogeneous electron-transfer kinetics, probably arising from
the large inner-sphere reorganization associated with VO2

+

reduction.19 An ideal mediator would exhibit facile kinetics at
the electrode, in addition to undergoing rapid reaction with NOx
species derived from O2 reduction.
The above considerations drew our attention to catalytic

aerobic alcohol oxidation reactions that employ 2,2,6,6-
tetramethylpiperidinyl-N-oxyl (TEMPO) or other organic
nitroxyls in combination with NOx-based cocatalysts (Scheme
2A).20,21 We speculated that the alcohol substrate could be
replaced with an electrode (Scheme 2B) to provide the basis for

nitroxyl/NOx-mediated electrocatalytic O2 reduction. The
results presented below validate this concept and show that the
nitroxyl/NOx cocatalysts enable O2 reduction at overpotentials
at least 200 mV lower than those previously attained with
molecular ORR electrocatalysts. Mechanistic studies provide key
insights into the nitroxyl and NOx redox reactions and have
important implications for bothORR electrocatalysis and aerobic
oxidation of organic molecules.

■ RESULTS AND DISCUSSION
Nitroxyl Disproportionation by Acid and Oxidation by

NaNO2. TEMPO is an organic radical that is stable in organic
and neutral aqueous solutions for extended periods. Under acidic
conditions, however, TEMPO undergoes disproportionation to
the corresponding oxoammonium and hydroxylamine species eq
6.22 This reactivity was probed in acetonitrile under acidic

conditions similar to those used in TEMPO/NOx-catalyzed
aerobic oxidation reactions. UV−visible spectra of TEMPO and
independently generated oxoammonium and hydroxylamine
species in acetonitrile are shown in Figure 1A. TEMPO exhibits a
broad absorption band, with a maximum at 459 nm. The
TEMPO-derived oxoammonium species, TEMPO+, exhibits an
absorption maximum in a similar region (λmax = 473 nm, εmax =
20.3 M−1·cm−1), but has an extinction coefficient approximately
twice that of TEMPO (ε459‑TEMPO = 10.5 M−1·cm−1; ε459‑TEMPO+
= 20.0 M−1·cm−1). The hydroxylamine species, TEMPOH, has
negligible absorbance in this region.
Addition of excess trifluoroacetic acid (TFAH, 13 equiv) to a

solution of TEMPO (10 mM) in acetonitrile results in spectral
changes consistent with the conversion of TEMPO to TEMPO+

and TEMPOH (Figure 1B; cf. eq 6). The change in nitroxyl
concentration over time was obtained by curve-fitting, using the
known spectra for TEMPO and TEMPO+,24 and the kinetic data
exhibit a second-order dependence on [TEMPO], with a kobs of
2.5 M−1 s−1 (see inset, Figure 1B). The system reaches
equilibrium with significant disproportionation (Keq ≈ 0.4 for
eq 6, corresponding to [TEMPO+]/[TEMPO] = 3.5). The
resulting solution exhibits negligible changes upon standing in air
for 30−40 min, indicating that TEMPOH formed upon TEMPO
disproportionation does not undergo facile oxidation by
dissolved O2.
The reactivity of TEMPO-derived disproportionation species

with NaNO2 was then investigated under anaerobic conditions.
Addition of a substoichiometric quantity of NaNO2 (0.09 equiv)
led to a growth of the TEMPO+ spectral feature. The amount of
TEMPO+ formed via oxidation of TEMPOH is consistent with
nitrite serving as a one-electron oxidant (Figure 1C and eq 7).

Subsequent addition of excess NaNO2 (1.4 equiv relative to the
original [TEMPO]) results in complete conversion to TEMPO+.
The spectrum of the fully oxidized TEMPO solution is very close
to that of a doubled spectrum of the TEMPO disproportionation
solution before addition of NaNO2, which contained a nearly

Scheme 2. Catalytic Cycles for TEMPO/NOx-Mediated
Aerobic Alcohol Oxidation (A) and Electrocatalytic O2
Reduction (B)
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50:50 mixture of TEMPO+ and TEMPOH. These results show
that nitrite is an effective oxidant for the conversion of TEMPOH
to TEMPO+.
Nitrite can undergo disproportionation into NO2 and NO

under acidic conditions eq 8,16 and NO2 is believed to be the
active oxidant under these conditions. A spectrum of nitrite in the
presence of acid shows a series of peaks with λmax of 345, 356,
370, and 385 nm (green trace, Figure 1C), which are in good
agreement with a species previously assigned to HNO2.

25,26 The
latter species is a precursor to the NO2 oxidant (see further
discussion below).

+

⇌ + + +

2NaNO 2CF CO H

NO NO H O 2CF CO Na
2 3 2

2 2 3 2 (8)

Addition of substoichiometric nitrite (0.09 equiv) to the
TEMPO-disproportionation solution under aerobic conditions
(1 atm O2) leads to complete conversion to TEMPO+ within 30
min (Figure 1D). As the experiments described above showed
that TEMPOH undergoes negligible direct oxidation by O2, this
process is attributed to NOx-catalyzed aerobic oxidation of
TEMPOH, resembling the process invoked in aerobic alcohol
oxidation reactions (cf. Scheme 2A). Again, the peaks between
350 and 400 nm that grow in and decrease during the catalytic

oxidation are consistent with the presence of dissolved HNO2,
possibly with some N2O4.

27

Electrochemical Studies of TEMPO and TEMPO/NOx

Solutions.Cyclic voltammetry (CV)measurements of TEMPO
in CH3CN show the expected reversible nitroxyl/oxoammonium
redox process at E1/2 = 249 mV vs ferrocene/ferrocenium (Fc/
Fc+; see Figure 2, black trace).28 Addition of 130 mM
trifluoroacetic acid to the CH3CN solution induces disproportio-
nation of TEMPO into the oxoammonium and hydroxylamine
species, as described above (eq 6, Figure 1B). This process is
manifested by an increase in the open-circuit potential of the
solution that reflects formation of the oxoammonium species
TEMPO+. TEMPO disproportionation is relatively slow on the
CV time scale, as revealed by two features in the red trace of
Figure 2. First, a broad irreversible peak corresponding to
proton-coupled reduction of TEMPO to TEMPOH is evident at
low potential (ca. −0.32 V in Figure 2). The availability of
TEMPO to participate in this process indicates that TEMPO
formed via reduction of the TEMPO+ has not undergone
disproportionation into TEMPO+/TEMPOH on the time scale
of the scan. Second, a CV peak associated with oxidation of
TEMPO to TEMPO+ in the reverse anodic scan provides
support for the persistence of TEMPO on the CV time scale.

Figure 1. UV−visible studies of TEMPO disproportionation and reactivity with NaNO2 under acidic conditions in acetonitrile. (A) Spectra of 10 mM
TEMPO+, TEMPO, and TEMPOH in CH3CN.

23 (B) Spectra obtained following addition of trifluoroacetic acid (TFAH) to a 10 mM solution of
TEMPO, corresponding to TEMPO disproportionation into TEMPO+ and TEMPOH eq 6. The linear fit to [TEMPO]−1 (inset) incorporates data
from three independent experiments. Conditions: 10 mM TEMPO in CH3CN, 130 mM TFA added at t = 0. (C) Spectral changes observed upon
addition of NaNO2 (0.09 and 1.4 equiv) to a disproportionated-TEMPO solution in CH3CN/TFAH under N2. The changes reflect oxidation of
TEMPOH to TEMPO+ by nitrite. The gray points represent the expected spectrum for full conversion of NO2

− to NO or TEMPO to TEMPO+

depending on the limiting reagent. Conditions: 10 mM TEMPO in CH3CN with 130 mM TFA, 0.9 or 14.4 mMNaNO2, N2 atmosphere. (D) Aerobic
oxidation of disproportionated TEMPO catalyzed by nitrite. The initial spectrum of TEMPO+ with colorless TEMPOH shifts to higher absorbance as
more TEMPO+ is formed (blue→ red, 2 min scan interval). The gray dotted spectrum depicts the spectrum expected if all TEMPO-based species are
converted to TEMPO+. Conditions: 10 mM TEMPO in CH3CN with 130 mM TFA, 0.9 mM NaNO2 added at t = 0, 1 atm O2.
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Addition of NaNO2 (2 equiv relative to TEMPO) to the
solution under anaerobic conditions leads to complete oxidation
of TEMPO to the oxoammonium species, as revealed by the lack
of a CV feature associated with oxidation of the nitroxyl in the
anodic scan (Figure 2, blue trace). A catalytic wave, evident at the
TEMPO+/TEMPO potential in the cathodic scan, is attributed
to TEMPO-catalyzed reduction of excess nitrite, HNO2, or other
oxidized NOx species present in solution.29 An irreversible
anodic feature at Ep≈ 0.80 V is assigned to oxidation of dissolved
NO produced from nitrite reduction (or disproportionation) in
the absence of O2 (cf. Table 1, eq 5).30

A catalytic CV wave very similar to the blue trace in Figure 2 is
observed when the same experiment is performed under aerobic
conditions. In order to better assess the ability of NOx to serve as
a catalytic mediator for electrochemical O2 reduction, controlled
potential electrolysis studies were performed under aerobic
conditions with the electrode potential set at 0.20 V vs Fc/Fc+.
The combination of TEMPO and NaNO2 produces significant
sustained catalytic current (Figure 3, red trace). The amount of
charge passed during the 2 h electrolysis corresponds to a
TEMPO-based turnover number of 93 and a turnover frequency

of 46 e−/h.31 The slow decrease in the electrolysis current is
attributed to a steady loss of active NOx species from the stirred
solution into the gas phase.32 A control experiment demon-
strated that the carbon electrode does not mediate catalytic
oxygen reduction in the absence of NaNO2 (Figure 3, orange
trace). A solution of TEMPO alone reveals only a small
electrolysis current that decays rapidly (Figure 3, blue trace),
corresponding to stoichiometric reduction of TEMPO+

generated from TEMPO disproportionation. A low level of
catalytic activity is evident from a solution of NaNO2 in the
absence of TEMPO (Figure 3, black trace), but the current
decays to near-zero during the 2 h electrolysis. Collectively, these
data demonstrate that both TEMPO and NOx species are
important for electrocatalytic ORR activity.

Electrocatalytic O2 Reduction with Other Nitroxyl/NOx
Combinations. The successful electrocatalytic ORR results
with TEMPO/NOx prompted us to examine three other organic
nitroxyl mediators (Scheme 3): 4-acetamidoTEMPO (ACT), 3-
carbamoyl-2,2,5,5-tetramethyl-1-pyrrolidinyl-N-oxyl (3-carba-
moylPROXYL or 3-CARP), and 9-azabicyclo[3.3.1]nonane-N-
oxyl (ABNO). The ACT and 3-CARP oxoammonium/nitroxyl
redox potentials (E1/2 = 324 and 346 mV, respectively) are 75
and 97 mV higher than TEMPO (E1/2 = 249 mV), while the
ABNO potential (E1/2 = 229 mV) is similar to that of TEMPO
(Figure 4). UV−visible studies show that ACT and 3-CARP
disproportionate at a slower rate and to a smaller degree relative
to TEMPO (see Supporting Information for details),33 and CVs
of these nitroxyls under acidic conditions (red traces, Figure 4)
are consistent with slow disproportionation on the CV time scale,
similar to that of TEMPO described above. ABNO is unique
relative to the other three nitroxyls, as it undergoes rapid
disproportionation on the CV time scale (Figure 4).34 There is
no peak for reduction of the nitroxyl to hydroxylamine at low
potentials because reduction of ABNO+ to ABNO combines with
ABNO disproportionation to afford ABNOH at the ABNO+/
ABNO reduction potential. The peak cathodic current for
ABNO in acid is similar to the anodic current without acid,
showing that the oxoammonium formed by disproportionation
must be undergoing a net 2-electron reduction at the ABNO+/
ABNO potential. The irreversibility of the reduction of ABNO in
acid, evident from the lack of a peak in the anodic scan, also
implies that the ultimate reduction product is the hydroxylamine.
Each of these three nitroxyls proved to be effective mediators

of O2 reduction under controlled potential electrolysis
conditions at 0.32, 0.33, and 0.19 V, respectively, for ACT, 3-
CARP, and ABNO (Figure 5). ACT and 3-CARP show very
similar catalytic performance, as might be expected from their
similar redox properties. ABNO exhibits higher steady-state
catalytic current than TEMPO, even though these nitroxyls have
nearly identical E1/2 values. The higher currents observed with
ABNO may be related to its more-facile disproportionation or
oxidation (cf. Figures S10 and S11), although a full mechanistic

Figure 2. Cyclic voltammograms of TEMPO under anaerobic
conditions in CH3CN (black trace) and following sequential addition
of CF3CO2H (130mM, red trace) andNaNO2 (2 equiv, blue trace), also
under anaerobic conditions. Standard conditions: 10 mM TEMPO, 0.5
M KPF6, N2 atmosphere, scan rate = 10 mV/s, glassy carbon electrode.

Figure 3. Controlled-potential electrolysis traces with and without
TEMPO/NOxmediators at 0.20 V vs Fc/Fc+ in 9:1 CH3CN:CF3CO2H
under 1 atm O2. Conditions: 0.5 M KPF6 + 1.25 mMNaNO2, 1.25 mM
TEMPO, 1.25 mM NaNO2 + 1.25 mM TEMPO, or no added catalyst/
mediator.

Scheme 3. Structures of 4-AcetamidoTEMPO (ACT), 3-
CarbamoylPROXYL (3-CARP), and ABNO
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rationale will require further investigation. Most significantly,
these results demonstrate that the operating potential for O2
reduction is established by the reduction potential of the
oxoammonium species present. This result is noteworthy
because the pH-independent reduction potentials of the four
nitroxyls studied here (0.23−0.35 V vs Fc/Fc+ or 0.87−0.99 V vs
NHE) are significantly higher than redox potentials of previously

studied molecular ORR catalysts (see below for an estimate of
the overpotential and further discussion).

Analysis of the Catalytic Mechanism. The above data
highlight the ability to achieve high-potential electrocatalytic O2
reduction by using an appropriate combination of electron- and/
or electron/proton-transfer mediators.35 The synergy between
the nitroxyl and NOx cocatalysts is evident from the inability of
the individual components to mediate independent ORR
electrocatalysis. NOx species undergo rapid reaction with O2
but react slowly at the electrode, while nitroxyls exhibit good
electrode reactivity but react poorly with O2. The facile reactivity
of the nitroxyl and NOx species with each other enables the
positive traits of the nitroxyl/NOx partners to achieve efficient
electrocatalytic O2 reduction.
Insights into the unique properties of the nitroxyl/NOx

cocatalyst combination can be gleaned from the data above as
well as previous literature,36−40 and the tandem catalytic cycle in
Scheme 4 provides the basis for our analysis. At the electrode,

TEMPO+ is reduced to TEMPO radical, which may be
reoxidized by NO2 to close the left-hand cycle. TEMPO
disproportionation appears to be relatively slow under the
reaction conditions and therefore is proposed to be off-cycle.
Nevertheless, oxidation of TEMPOH by NO2 is facile and
provides another entry into the catalytic cycle (cf. Figure 1D).
The reduction of NO2 by TEMPO generates nitrite, which
undergoes protonation and release of water in a sequence of
steps that eventually forms NO.16 Aerobic oxidation of NO to
NO2 is facile

15 and closes the right-hand cycle of the catalytic
mechanism. Rapid reaction of TEMPO with NO2 minimizes the
conversion of NO2 into HNO3 in an undesirable off-cycle
pathway.41

Nitrogen oxide species (NOx) have been the subject of intense
study, inter alia, as catalysts, as atmospheric pollutants, and for
their role in biology,16,42,43 and kinetic and thermodynamic data
for various NOx- and TEMPO-based reactions obtained from

Figure 4. Cyclic voltammograms of ACT, 3-CARP, and ABNO under
anaerobic conditions in CH3CN (black trace) and following addition of
CF3CO2H (130 mM, red trace). Standard conditions: 10 mM nitroxyl,
0.1 M KPF6, N2 atmosphere, scan rate = 10 mV/s, glassy carbon
electrode. Arrows indicate the starting potential of each scan.

Figure 5. Controlled-potential electrolysis traces with ACT (black), 3-
CARP (green), and ABNO (blue) mediators in combination with
NaNO2 as a NOx source at 0.32, 0.33, and 0.19 V, respectively, vs Fc/Fc

+

in 9:1 CH3CN:CF3CO2H under 1 atm O2. The TEMPO (red) trace is
reproduced from Figure 3 for comparison. Conditions: 0.5 M KPF6 +
1.25 mM NaNO2, 1.25 mM nitroxyl.

Scheme 4. Proposed Mechanism for the TEMPO-Mediated
Electrocatalytic Reduction of O2 by NOx

a

aSpecies and processes for which there is evidence from the present
work are in black, ones inferred from the literature are in gray (see
below).
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those studies support the mechanism in Scheme 4 (see Table S1
and associated text for details).
The other nitroxyls used in this study are expected to react via

the same mechanism as TEMPO, and ACT, 3-CARP, and
ABNO display similar steady-state catalytic currents when the
electrolysis potential is adjusted to account for the different E1/2
values. In principle, the electrode potential could be increased
further by using nitroxyls with even higher E1/2 values as long as
the reduction potential of NO2 is high relative to that of the
nitroxyl. As the oxoammonium reduction potential increases, its
oxidation by NO2 becomes less favorable.36a The resulting
increase in the steady state concentration of NO2 may be the
source of the more rapidly decreasing current observed with
ACT and 3-CARP, relative to TEMPO and ABNO (Figure 5),
owing to the competing conversion of NO2 into HNO3.
Estimate of Overpotential and Comparison of Nitrox-

yl/NOx with Other Molecular ORR Catalysts. Among the
many molecular electrocatalysts that have been considered for
O2 reduction,

2−8,44 macrocyclic metal complexes, such as Fe and
Co porphyrins and corroles, are among themost common. Other
examples include Cu-oxidase and Fe/Cu-cytochrome c oxidase
mimics.44f,g Strategic catalyst designs, including complexes with
enforced proximity of two metal centers2c,d,44a,b,e,f or those that
incorporate proton relays,3c,5 have enabled good reaction rates to
be achieved with good selectivity for H2O over H2O2 as the
reduction product (see Table S2 for structures, H2O/H2O2
selectivities, and estimated overpotentials for over two dozen
representative examples). Nevertheless, these catalysts typically
operate at potentials where at least one metal ion is divalent (i.e.,
some bimetallic complexes may initiate the reaction from anMII-
MIII state) because complexes containing isolated trivalent metal
centers typically exhibit little-to-no affinity for O2 and are unable
to initiate O2 reduction (Scheme 5). In this context, fundamental

studies of cobalt porphyrins show that the CoIII/II potential is
inversely correlated with O2 binding affinity of CoII.45 These
considerations indicate that the ORR potential of metal-based
catalysts will be pinned to the metal redox potential.46 The
highest ORR potentials have been observed with Co-based
macrocycles, but, in spite of decades of research with such
complexes, the electrode potentials observed for electrocatalytic
O2 reduction have not exceeded the CoIII/II potential of cobalt
tetraphenylporphyrin (CoTPP) by more than 200 mV. To our
knowledge, the highest potentials have been observed with
cofacial bis-[Co-porphyrin]44b and Co-porphyrin/Co-corrole47

conjugates, which operate at overpotentials of η ≈ 520 mV (cf.
Table S2).
It is not straightforward to assign overpotentials to the ORR

reactions studied here due to uncertainties in the thermodynamic
potential for O2 reduction under the unbuffered nonaqueous
reaction conditions.48 According to the above discussion,
however, the CoIII/II potential for CoTPP serves as a useful

benchmark, and the ORR activity observed with the ACT/NOx
and 3-CARP/NOx takes place at a potentials nearly 500 mV
higher than the CoIII/II potential for CoTPP under the same
conditions.49

It is also possible to estimate the thermodynamic potential of
O2 reduction as being 1.23 V above the H+/H2 potential under
the same conditions. Therefore, the H+/H2 potential was
measured in acetonitrile with a TFAH/NaTFA electrolyte (1
M each) according to a recently reported protocol.50,51 The
observed H+/H2 potential of−0.61 V vs Fc/Fc+ (see Figure S14)
corresponds to an O2 reduction potential of +0.62 V. A steady-
state ORR electrolysis experiment was then performed with the
ACT/NOx-mediator system under these conditions at an applied
potential of +0.32 V vs Fc/Fc+. The current was somewhat lower
than that observed under the unbuffered conditions described
above; however, >26 turnovers with respect to ACT were
observed over a 4 h period. These results reflect catalytic ORR
performance at an overpotential of only 300 mV.
This favorable performance is consistent with the high

standard potentials associated with proton-coupled reduction
of NO2 (1.06 V vs NHE; cf. Equation 4 in Table 1) and reduction
of ACT- and 3-CARP-derived oxoammonium species (0.96 and
0.99 V vs NHE, respectively). Nitric oxide is the NOx species that
binds O2, and it may be generated at reduction potentials where
metal-based catalysts are typically in an oxidation state incapable
of binding O2 and unreactive toward ORR.52 Moreover, NO
reacts rapidly with O2 to form NO2 with cleavage of the O−O
bond, exhibiting specificity for the four-electron reduction of O2.

Implications of NOx/O2 Reactivity for Aerobic Oxida-
tion Reactions. The strategy employed here for high-potential
electrocatalytic O2 reduction was inspired by nitroxyl/NOx-
catalyzed aerobic alcohol oxidation (cf. Scheme 2). The
electrocatalysis results also have implications for aerobic
oxidation reactions, and they shed light on the growing interest
in NOx-based cocatalysts for aerobic oxidations, including
reactions normally incompatible with O2 as the oxidant. 2,3-
Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) is a high-
potential quinone that finds widespread use in organic chemical
synthesis, but it is almost exclusively used as a stoichiometric
reagent. Recent studies show, however, that NOx-based
cocatalysts may be used with catalytic DDQ in aerobic oxidation
reactions, including dehydrogenation of saturated C−C bonds,
oxidation of benzylic and allylic alcohols, oxidative cleavage of
benzylic ethers, and oxidative C−C coupling reactions.53

Pd-catalyzed oxidation reactions involving high-valent (PdIII

or PdIV) intermediates typically require strong stoichiometric
oxidants, such as hypervalent iodine reagents or electrophilic
halogen sources.54 While aerobic oxidation of Pd0 is a key feature
in many PdII/Pd0-catalyzed oxidation reactions,9a,55 the analo-
gous oxidation of PdII to PdIV (or PdIII) by O2 is rare.

56 Several
recent studies, however, show that NOx cocatalysts enable
efficient aerobic oxidation in reactions that probably proceed via
high-valent Pd intermediates, such as the acetoxylation of
benzene and vicinal dioxygenation of alkenes (Scheme 6A).57

Many mechanistic features remain to be elucidated for these
reactions, but NO2 is proposed to oxidize organopalladium(II)
species to high-valent Pd intermediates that undergo carbon-
heteroatom bond formation (e.g., Scheme 6B). The effectiveness
of NOx cocatalysts undoubtedly reflects the increased driving
force available from the one- or two-electron reductions of NO2
to HNO2 or NO/H2O (cf. Table 1) relative to the analogous
one- or two-electron reductions of O2 to HO2 or H2O2. Overall,
these observations demonstrate that oxidation of NO to NO2

Scheme 5. Macrocyclic Metal Catalysts Initiate O2 Binding
and Reduction from the MII Oxidation State (M = Fe, Co)
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captures much of the free energy available from O2 as an oxidant,
and NO2 is then capable of serving as an effective, kinetically
advantageous high-potential oxidant.

■ CONCLUSION
This study demonstrates that by combining the facile electro-
chemistry of nitroxyls with the high-potential O2 activation
chemistry of NOx, it is possible to achieve efficient electro-
catalytic O2 reduction at high potentials. The operating potential
of the catalyst system is set by the reduction potential of the
oxoammonium form of the nitroxyl mediator, while the catalyst
stability is determined by the rate of decomposition of NOx into
unreactive species. The nitroxyl mediator helps to stabilize the
catalyst by shifting the NOx speciation toward intermediates that
are less susceptible to decomposition. Organic nitroxyls alone do
not reduce oxygen and NOx alone displays sluggish electro-
chemistry, but together they create an efficient system that
delivers much of the thermodynamic potential available from the
four-electron reduction of O2.
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The NO2 Absorption Spectrum. II. Absorption Cross-Sections at Low
Temperatures in the 400−500 nm Region. J. Atmos. Chem. 1995, 21,
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